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INTRODUCTION 

The common p r a c t i c e  in applying pseudospec t ra l  methods t o  p a r t i a l  d i f -  

f e r e n t i a l  equat ions  is  t o  s a t i s f y  the equat ion  a t  t h e  i n t e r i o r  nodes and to 

impose t h e  boundary cond i t ions  a t  the boundary. This  procedure does not t ake  

i n t o  cons ide ra t ion  t h a t  t h e  d i f f e r e n t i a l  equat ion  is s a t i s f i e d  a t  po in t s  a rb i -  

t r a r i l y  c l o s e  to t h e  boundary. In [ 4 ] ,  t h e  au tho r s  d iscussed  t h e  advantages 

of imposing a combinstiex of boundary conditions and t h e  equat ion  i t s e l f  a t  

t h e  boundary nodes, f o r  Chebyshev approximations of t he  Laplace equat ion  with 

Neumann condi t ions.  Here w e  analyze t h e  same i d e a  app l i ed  t o  t h e  l i n e a r  

hyperbol ic  equat ion  

We assume t h a t  t h e  c o l l o c a t i o n  points  are t h e  Gauss-Lobatto Chebyshev 

quadra ture  nodes. The s t a b i l i t y  of t h e  method, wi th  t h e  commonly used 

boundary t rea tment ,  i.e., imposing uN(1, t )  = g ( t )  w a s  analyzed in [ lo ] .  

Here w e  show t h e  convergence of the method f o r  t h e  new boundary t rea tment ,  

where a is p o s i t i v e  and l a r g e  enough. A pre l iminary  t h e o r e t i c a l  discus-  

s i o n  i n  Sec t ion  I and numerical  experiments i n  t h e  las t  Sec t ion  show t h e  

e f f e c t i v e n e s s  of t h e  method. I n  Section I11 w e  use  t h e  r e s u l t s  obtained f o r  

t h e  hyperbol ic  equat ions  t o  show that t h e  second d e r i v a t i v e  matrices, cor- 
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responding t o  t h e  Neumann cond i t ions  wi th  t h e  new approach, have real  and 

nega t ive  eigenvalues. The analogous r e s u l t  f o r  t h e  classical  way t o  impose 

boundary conditions w a s  p rev ious ly  proven i n  [81. 

1. DESCRIPTION OF "E NEW METHOD 

In orde r  t o  i l l u s t r a t e  t h e  new method of imposing boundary cond i t ions  and 

t o  exp la in  what ga in  can be r e a l i z e d  by t h i s  method, w e  begin wi th  t h e  

fo l lowing  simple t i m e  independent problem 

where f € C s ( [ - l , l ] )  i s  g iven  (s  > 0 ) .  - 
I n  t h e  standard pseudospec t ra l  Chebyshev method ( s e e  f o r  i n s t a n c e  [ 6 ] ) ,  

w e  look f o r  a polynomial of degree N,  say  vN, such t h a t  

( a )  - dVN ( x . )  = f ( x . 1  j = l , * * * , N ,  
dx J J 

( b )  vN(1) = 0 ,  
(1.2) 

where are t h e  Gauss-Lobatto Chebyshev nodes 

i n  [-1,1]. I n  o rde r  t o  determine vN from (1.2), vN(x) i s  expressed by i t s  

unknown p o i n t  values v ( x  ) us ing  t h e  Lagrange i n t e r p o l a t i o n  polynomial 

x = cos #- , j = O , l , -  ,N 
j 

N j  

N 

where 

k 2 -(-1) (1  - x ) T ~ ( x )  

ckN (x - xk) 
gk(x) = 2 
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Here TN is the N-degree Chebyshev polynomial and c = 1 if 1 - -  < j < N-1, 
while c0 = cN = 2. Therefore 

j 

Upon substituting the above relations in (1.2), we get a linear system of 

equations for the point values v,(xk)O We note that in (1.1) the dif- 

ferential equation holds in any arbitrary neighborhood of the boundary, where- 

as in (1.2) the differential equation is satisfied not further than x = xl. 

We did not require, for instance, that the equation could also be satisfied 

at x0 = 1. We propose now another procedure that takes into account the 

differential equation at the boundary as well as the boundary condition. 
t 

I 

In our new method, we seek an N-degree polynomial uN such that 

where a > 0 is a 

d'N = f(x.) j =  l,.**,N - (x.) 
J dx J 

uitable constant depending n N, t be determi d 
1 duN later. By writing the equality (1.3)(b) as a (F - f)(l) = uN(l), we note 

that (1.2) is obtained from ( 1 . 3 )  by letting a + +cD. We remark that the 

solution of (1.3) satisfies neither the boundary condition nor the equation 

at x = 1; if the method converges both will be satisfied as N + +oo. 

To show the advantage of the new procedure, we give in Figure 1.1 the 

plot of the error 



-4- 

multiplied by lo5 versus a, for f(x) = sin(x - 1) and N = 8. The 

point xo is not taken into consideration in the sum because the exact 

solution is known there. It is clear from the figure that E(a) is not 

which minimizes E. In monotone in a and there exists a = a 

particular we have Further experiments indicate that, in 

terms of 

mi n 

E(amin) < E(*). 
increases like N2. 

N s  amin 

E X105 

.5 

I 

700 a amin 

Figure 1.1 - Behavior of the error versus a. 

We would like to explain why the procedure (1.3) should be, in general, better 

than (1.2). We start by noting that if E is a polynomial of degree N-1 at 

most, then both (1.2)(a) and (1.3)(a) hold, not only at the grid points xj, 
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but for every x since both sides of the equations are polynomials of de- 

gree N-1. In particular - (1) = f(l), thus by (1.3)(b) we get uN(1) = 0, 

leading to the conclusion that uN(x) = vN(x), Vx. Suppose now that f is a 

polynomial of degree N. We can assume, because of the linearity, that 

duN 
dx 

Hence: f(x.) = 0, j = l,***,N and f(1) = 1. Any other polynomial, up to 

a constant factor, can be obtained from (1.5) by adding some suitable poly- 

nomial of lower degree. In this case it is easily verified that the solu- 

tion U of (1.1) is given by 

J 

It is clear that the solution of (1.2) is 

On the other hand, the solution of (1.3)(a) is a constant and from (1.3)(b) we 

get 

UN(X) = - ;; , Vx. 

1 - = $, a Set then the error is given now by 

(1.9) 
2 1 1/2 

j 

N 

j=l 
E = (+ 1 (u(x.1 + $1 y) 

J 
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To minimize E one has  t o  choose B as t h e  nega t ive  mean of U ,  namely 

N , N 

= -  J -  J 

N 1  ’ min N Y 

I L T  n - i -  
L “j 

j -1 L - F  j=l j 

and an  easy ca l cu la t ion  shows t h a t  

(1. l o )  

This exp la ins  the behavior of amin as a func t ion  of N. 

I n  Table 1.1, we summarize t h e  r e s u l t s  of another  experiment. This t i m e  

wi th  t h e  boundary cond i t ion  U(1) = 1,  s o  

W e  have t r i e d  t h e  two d i f f e r e n t  

w e  took 2 

t h a t  t h e  s o l u t i o n  was 

ways of imposing boundary condi t ions ,  i.e. 

f ( x )  = - - (1 - x ) ” ~ ,  

U(x) = (1  - x ) 3 / 2  + 1. 

is  given by ( l . l O ) ) ,  “min a (uN(l) - 1) = f ( l ) ,  (where ( 1 . 1 2 )  -- duN 
dx min 

and w e  va r i ed  t h e  number of g r i d  p o i n t s  N. 

I 

I 
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N Condit ion (1.11) Condit ion (1.12) 

0.281837 

0.3389913-01 

0.9957383-02 

0.4184103-02 

0.243315 

0.1838943-01 

0.4789913-02 

0.1901293-02 

! 

Table 1.1 - Comparison of t h e  e r r o r s  between t h e  two ways of imposing boundary 
condi t ions .  

2. THE TlME DEPENDENT PROBLEM 

In t h i s  s e c t i o n ,  w e  show how t o  apply t h e  new procedure of s e t t i n g  the 

boundary condi t ions ,  descr ibed  i n  the previous s e c t i o n ,  to a hyperbol ic  equa- 

tion. An a n a l y s i s  of t h e  convergence of t h i s  method w i l l  be c a r r i e d  out  f o r  

Chebyshev approximations. Consider the equat ion  

U(x,O) = f (x) .  t 
The pseudospec t ra l  semi-discrete  approximation to (2.1) we sugges t  in t h i s  

paper involves  seeking  a polynomial uN of degree a t  most N such t h a t  
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The choice of the nodes {xj} determines t h e  p a r t i c u l a r  s p e c t r a l  method. For 

example, t h e  poin ts  

determine t h e  usua l  pseudospec t ra l  Chebyshev method, whereas t h e  p o i n t s  

x = cos j = 0,1,..*,N, j N + l  ( 2 . 4 )  

determine a d i f f e r e n t  ve r s ion  ( s e e  [7] ). Pseudospec t ra l  Legendre is  def ined  

by choosing xj t o  be t h e  extrema of t h e  N-th degree Legendre polynomial. 

We would l i k e  t o  show he re  t h e  convergence of t h e  s o l u t i o n  u N ( x , t )  of 

(2.2) t o  U(x, t )  def ined  i n  (2.1) when N + +m, i n  t h e  case of Chebyshev 

methods. The proof of t h e  s t a b i l i t y  i n  t h e  case a = fm (i.e., t h e  common 

way of imposing boundary condi t ions)  w a s  d i scussed  i n  [ l o ] .  Here w e  fo l low 

t h e  same bas ic  ideas .  We g ive  t h e  proof wi th  some d e t a i l ,  s i n c e  i t  w i l l  be 

u s e f u l  t o  f u r t h e r  r e s u l t s  concerning s y s t e m s  of d i f f e r e n t i a l  equat ions.  For 

t h e  convenience of t h e  reader ,  w e  a l s o  r e p o r t  t h e  proof of convergence which 

never appeared i n  l i t e r a t u r e .  We s tar t  wi th  t h e  fol lowing pre l iminary  re- 

s u l t s .  
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Le- 2.1: Let uN(x,t) be the solution of (2.2) when xj are given by 

(2.31, then 

- 

Proof: 

evaluated at the collocation nodes. 

It is sufficient to note that (2.5) exactly coincides with (2.2), when 

i 
We define now PMU as the polynomial interpolating U at the points 

cos ILL , j = o,~,...,M, 

any M. We are ready to write the error equation. 

Note in particular that (PMU)(l,t) = U(l,t>, for M 

Lema 2.2: Let E~(x,~) = %(x,t) - PNw3U(x,t), then - - 

where Q(x,t) is a polynomial of degree N-3 in x, given by - 
a a Q(x,t) = ax ('N-3') - 'N-3(= 'I. 

Proof: We apply PN-3 to (2.1) to get 
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with  t h e  i n i t i a l  cond i t ion  [PN,3u]t,O = PN-3fO I n  f a c t ,  no te  t h a t ,  s i n c e  

(PN,3U)( l , t )  = g ( t ) ,  t h e  l a s t  term t h a t  was introduced i n  (2.7) i s  zero. 

Hence, (2.6) follows from (2.7) and (2.5). 

Next w e  w i l l  show t h a t  EN(x , t )  t ends  t o  ze ro  as N increases .  The 

For t h i s ,  w e  need proof w i l l  be based on a c a r e f u l  energy estimate f o r  (2.6). 

t he  fol lowing lemmas. 

4N- 1 

k=O 
Lemma 2.3: - Let  w(x) = 1 bkTk(x), t hen  

where co = cN = 2 and Ck = 1 - f o r  0 < k < N. - 

k = 0,***,4N-l.  I f  0 < k < 2N-1, (2.8) i s  

a well-known quadrature  formula (see [ 9 ] ) ;  i f  k = 2N, it i s  a t r i v i a l  r e s u l t  

Proof:  W e  test  (2.8)  f o r  Tk, - -  

by no t i c ing  tha t  T ( x . )  = 1; i f  2N+1 < k < 4N-1, then  by w r i t i n g  T2N+,,, - - - -  2 N  J 

= 2TNT,-T2Nm, (2.8) fo l lows  e a s i l y  from t h e  o r thogona l i ty  of t he  Chebyshev 

polynomials. I 

N 

k=O 
Lemma 2.4: Let v(x)  = 1 %Tk(x), t hen  - 

N 1  
(2.9) 1 - ( 1  + x j ) ( l  - ~ ~ X . ) V ( X . ) V ~ ( ~ ~ >  = 

N j = O  C .j J J 

I 
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f o r  any $ real. - 

Proof:  The r e s u l t  is  a n  a p p l i c a t i o n  of t h e  previous l e m m a  (see a l s o  [ l o ] ) .  

Lemma 2.5: L e t  c N ( x , t )  be def ined  by (2.6). Suppose t h a t  - 
N 

Proof:  We can argue as i n  [ l o ]  using (2.6) and t h e  f a c t  t h a t  Q(x,t) is a 

polynomial of degree N-3. 

Le- 2.6: E ~ ( x , ~ )  be defined by (2.6),  t hen  

- 2 N(3$  - 1 - {)ai. 

Proof:  Combine t h e  r e s u l t s  of Lemma 2.4 and Lemma 2.5. 
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Theorem 2.1: Define 

1 2 2N- 1 2 
N 1  (2aN - a 1 , N- 1 (2.12) l l e N 1 I 2  = IL 1 - ( 1  + x . ) ( l  - - x . )  EN(Xj,t) + 71 - 

C J 2 J  16N N j = o  j 

and l e t  2 K 1- zm+zm 1 
Y K = X  1 1 -zm 9 m= 1 

where a re  the  zeroes  of TK - and K i s  chosen such t h a t  K - > N+1. - ‘rn 
Then we have 

1 

-1 
- < 2 (1 + x ) ( l  - $I2 Q 2 ( x , t )  /T 1 dx, Y t  > 0 .  

Proof:  

by 

We evaluate  t h e  equat ion i n  (2.6) a t  t he  po in t s  x j ,  then we mul t ip ly  

1 2 (1  + x . ) ( l  - - x . ) c N ( x j , t )  
N c  J 2 J  

and sum up over j = O,...,N to g e t  
j 

N 1  1 a (2.14) 5 1 - (1  + x . ) ( l  - - x . ) E  ( X  t )  - E :  ( X  t )  = 2 J N j’  a t  N j ’  N j = O  C j J 

The r i g h t  hand s i d e  of (2.14) i s  composed by t h r e e  terms. We s t a r t  by 

e s t ima t ing  the last term. 

1 
(1 + x ) ( l  - ~ x ) E ~ Q  

F i r s t ,  w e  r e a l i z e  t h a t  t h e  polynomial 

is  of degree 2N-1 and t h e r e f o r e ,  by Lemma 2.1, w e  have 
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Upon using the Gauss quadrature formula based on z m = 1,. * *  ,K one gets m’ 

For the first term in the right hand side of (2.14) we use the result in Lemma 

2.6 with B = T .  Therefore, by (2.12) and the previous estimate, we get 

(2.15) -- 2 1 d  dt UENU 2 1  5 T J (l+x)(l - 7x1 l a  - [EN(X,t) 2 - EN(l,t)l 2 - dx + 
1 

-1 m ax 

n 1 1  2 n u 2  - - 2 N(7 - m > a N  - EN(l,t) + 
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I n t e g r a t i o n  by p a r t s  f o r  t h e  f i r s t  term i n  t h e  r i g h t  hand s i d e  of (2.15) 

y i e l d s  

where w e  noted t h a t  t h e  l as t  in tegrand  is  a polynomial of degree 

and t h e r e f o r e  the Gauss quadra ture  formula is  exact .  Going back t o  (2 .15) ,  

one f i n a l l y  ge ts  (2.13). 

2N+1 - < 2K-1 

Remark 2.1: It can be shown t h a t  II*II def ined  i n  (2.12) i s  a c t u a l l y  a 

norm. I n  f a c t ,  it i s  p o s s i b l e  t o  f i n d  a cons tan t  c, independent of N ,  such 

t h a t  

2 2 dx 
IIENll c J E N  (1  + X I  9 

r )  

f o r  every polynomial E of degree a t  most N. N 

F i n a l l y ,  by i n t e g r a t i n g  (2.13),  w e  g e t  t h e  main r e s u l t  of t h i s  s ec t ion .  

* 
Theorem 2.2: Let a be such t h a t  n(7 a - yW1 ) > C , where C* does not 

depend on N ,  then w e  have 

- 
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(2.16) IleN(*,t)l l2 + c * t 2  / EN(1,r)dr  1. 
0 

t 1  

0 -1 
- < IIPNf - PN,3 fl12 + 4 / / ( l + x ) ( l  -$)2 Q2(x,-r)&? dxdr. 

The previous theorem is a convergence r e s u l t  by not ing  t h a t  t he  r i g h t  hand 

s i d e  of (2.16) goes t o  zero  i n  a s p e c t r a l  way (see f o r  i n s t ance  [ l ] ) .  

1 
2 converges to - when N goes t o  +oo. 

yN+l Remark 2.2: One can check t h a t  - N 

This  means t h a t ,  by t ak ing  a propor t iona l  t o  N2, t h e  hypothesis  of Theorem 

2.2 is s a t i s f i e d .  This  assumption is similar t o  t h a t  made f o r  t h e  t i m e  

independent problem ( see  ( 1  10) ). 

3. BOUNDARY CONDITIONS FOR ELLIPTIC EQUATIONS 

A t h e o r e t i c a l  a n a l y s i s  of t he  convergence f o r  pseudospectral  approxima- 

t i o n s  of the  s o l u t i o n  of Neumann problems, w i th  a modified approach t o  treat  

t h e  boundary condi t ions  s imilar  t o  tha t  examined i n  t h e  previous s e c t i o n s ,  has  

been developed i n  [ 4 ] .  Here w e  s h a l l  prove t h a t  t h e  matrices r e l a t i v e  t o  such 

approximations have r e a l  and s t r i c t l y  negat ive  eigenvalues  (note  t h a t ,  i n  t h e  

Chebyshev case, these  matrices are not symmetric). To  t h i s  purpose, w e  con- 

s i d e r  t h e  pa rabo l i c  equat ion  

wi th  t h e  Neumann boundary condi t ions  
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The solution is determined up to a constant. The Chebyshev method with the 

new boundary treatment involves seeking an Nth degree polynomial uN such 

that 

(3.3) 

and 

( 3 . 4 )  

+ a - =  at x = l  2 ax a x  

at x = -1, - - - -  a - = O  ax 

where a is a positive constant to be determined later on. The eigenvalue 

problems associated with (3.3) - ( 3 . 4 )  consist of finding a non-vanishing 

polynomial v, of degree at most N, such that 

(3.5) 

and 

at x = x j = l,-..,N-l, 
j’ 

xv = v xx 

The problem ( 3 . 5 )  admits the trivial solution A = 0. We will show that the 

other eigenvalues are real and strictly negative. We begin by noticing that 



-17- 

one can explicitly derive the characteristic polynomial of (3.5) - ( 3 . 6 ) .  In 

fact, (3.5) can be written as follows 

Xv = v + aR + bS, a,bElR, xx (3.7) 

where 
xT'(x) T'(X) -N , S ( x )  = - . N R(x) = 
N2 N2 

Therefore, following [8], we have the next result. 

Lemma 3.1: The solution v of (3.7) is given by 

(3.8) v(x) = a P(X,P) + b q(x,p), 

where p = I - and 

(3.9) 

Proof: We first note that p and q are polynomials in X. Then, it is 

easily verified that 
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XP - Pxx = R  

Xq - qxx = s  

i n  IR 

i n  R ,  

and t h e r e f o r e  v defined i n  ( 3 . 8 )  is  t h e  s o l u t i o n  of ( 3 . 7 ) .  This completes 

t h e  proof. 

To get t h e  c h a r a c t e r i s t i c  polynomial of t h e  second d e r i v a t i v e  ope ra to r  w e  need 

t o  s u b s t i t u t e  (3 .8 )  i n t o  ( 3 . 6 )  and make use of ( 3 . 1 0 )  t o  g e t  

From now on w e  suppose t h a t  N is even ( f o r  N odd similar arguments can be 

a p p l i e d ) ,  s o  tha t  we have R(1) = S ( 1 )  = R(-1) = -S(-1) = 1 and 

P(X,lJ> = p(-x,lJ), q(x,ll) = -q(-x,lJ). Hence, w e  can s ta te :  

Theorem 3.1: The complex number X # 0 i s  an  e igenvalue  of ( 3 . 6 )  i f f  

l.I = x  s a t i s f i e s  

Proof: The l e f t  hand s i d e  of ( 3 . 1 2 )  i s  t h e  determinant of ( 3 . 1 1 ) .  Since  

w e  are looking  f o r  n o n t r i v i a l  s o l u t i o n  of ( 3 . 6 ) ,  such determinant must vanish. 
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Now, d e f i n e  

(3.13) 

It is not d i f f i c u l t  t o  check t h a t  g and h are polynomials i n  p of 

I n  o r d e r  t o  show tha t  t h e  roo t s  of g ( p )  and h(p) are ?: degree - 2 .  

real  nega t ive  and d i s t i n c t ,  w e  u s e  the no t ion  of a p o s i t i v e  p a i r  (see [51 and 

[8]). Two polynomials form a p o s i t i v e  p a i r  i f  t h e i r  r o o t s  are real  nega t ive  

and i n t e r l a c e d .  We s h a l l  prove, f o r  i n s t ance ,  t h a t  g(p) and p ( l , p ) / p  

form a p o s i t i v e  p a i r .  To show t h a t ,  w e  f i r s t  need t h e  fo l lowing  r e s u l t  (we 

reca l l  t h a t  yk has  been def ined  i n  Theorem 2.1). 

Lemma 3.2: L e t  - 

(3.14) 

where g is def ined  i n  '(3.13) and p in (3.9). Then f is a Hurwitz 

polynomia l  ( i . e . ,  a l l  i t s  r o o t s  l i e  i n  t h e  l e f t  s i d e  of t h e  imaginary axis) 

provided a is s u f f i c i e n t l y  large. 

(3.15) 
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We show that f is the characteristic polynomial relative to the pseudo- 

spectral approximation of a hyperbolic problem. In fact, define 

then it is readily verified that 

and that the roots of f ( p )  = 1 + a p ( 1 , p )  = 0 give the corresponding eigen- 

values. Now, (3.16) actually is the eigenvalue problem associated with the 

hyperbolic equation 

EN With a proof similar to that of Theorem 2.1, where 

with g E 0 and Q : 0 ,  it is possible to show that, for some norm II 1 1 ,  

d we have - llwNI12 < 0 if a is suitably large. This implies that f is dt 

Hurwitz. 

W, plays the role of 

A s  an immediate result of Lemma 3.2, we have the next theorem. 

Theorem 3.2: - If a is sufficiently large then the roots p of the 

polynomial g defined in (3.13) are real negative and distinct. 
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Proof:  The theorem is  a consequence of f being a Hurwitz polynomial. I n  

f a c t ,  t h i s  is  a necessary and su f f i cen t  conditon f o r  g(p)  and p ( l , p ) / p  

t o  form a p o s i t i v e  p a i r  ( see  [51, p. 228) .  In p a r t i c u l a r ,  t he  roo t s  of g 

are real and negative.  m 

- 

In t h e  same way, we can a l s o  prove: 

Theorem 3.3: - I f  a is s u f f i c i e n t l y  l a r g e  then the  roo t s  

polynomial h def ined i n  ( 3 . 1 3 )  are r e a l  nega t ive  and d i s t i n c t .  

lJ of t h e  

- Proof:  It can be v e r i f i e d  t h a t  t h e  polynomials h(p)  and q ( l , p ) / p  form 

a p o s i t i v e  p a i r  by showing t h a t  i s  a Hurwitz poly- 

nomial. 

h(p2) + ap[ q ( 1 3 p 2 ) ]  
IJ 

F i n a l l y ,  by Theorems 3 .1 ,  3 .2 ,  and 3 . 3 ,  we can conclude with the  fol lowing 

r e s u l t .  

Theorem 3.4: - I f  a is s u f f i c i e n t l y  l a r g e  then  t h e  eigenvalues  X # 3 - of 

t h e  second d e r i v a t i v e  Chebyshev matrix wi th  t h e  boundary condi t ions  ( 3 . 5 1 ,  are 

real and negative.  

It is e a s i l y  v e r i f i e d  t h a t  a turns out  t o  be propor t iona l  t o  N2 as is 

a l s o  pointed out i n  [ 4 1 .  

I 
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..-5 

4,  ANALYSIS OF THE EIGENVALUES AND m R I C A L  EXPERIMENTS 

In this section, we analyze the behavior of the eigenvalues of the 

Applying the same proof (N+l)x(N+l)  matrix associated with the scheme ( 1 . 3 ) .  

of Theorem 2.1 in Section 2 to the equation ( 2 . 5 )  with g 0 ,  we get 

N = 9  

a=N 2 

0 

0 

0 

0 

" - another -5 
eigenvalue 
at -47 

0 

0 

0 

Figure 4 . 1  - Eigenvalues in the complex plane using scheme (1 .3 ) .  
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i 
I. 

This says that such eigenvalues have negative real parts. In Figure 4.1, they 

are plotted for N = 9 and a = N . The distribution in the complex plane 

is similar to that of the eigenvalues corresponding to the NxN matrix 

associated with the system (1.2). The extra eigenvalue coming from (1.3) is 

real, negative and its magnitude is proportional to N2. If RN(A) is the 

Nth degree characteristic polynomial related to (1.2) (see [2] for the 

explicit expression of the coefficients) it is easy to check that the eigen- 

values of (1.3) are the N+l roots of the equation 

2 

The eigenfunction corresponding to the root A of (4.1), up to a normaliz- 

ing constant, takes the following form 

N 

k=O 
u(x) = 1 h(k)(x) AN-k, 

where h(x) = T;(x)(l+x). 

To discretize in time (2.2), we can use the second order Runge-Kutta method. 

The analysis of the stability of the method, based on the knowledge of the 

eigenvalues of (1.3), gives an upper bound on the time step At. By choos- 

ing a proportional to N2, the restriction on At is, with a good 

approximation, represented by the formula 

(4.3) 2 
a - .4N2 

At < . - 
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2 2 Therefore ,  by t ak ing  a = N , cond i t ion  (4.3) says  t h a t  At - < 3.3/N . 
Such r e s t r i c t i o n  i s  s l i g h t l y  more seve re  than  t h a t  ob ta ined  by e x a c t l y  impos- 

i n g  t h e  boundary cond i t ion  i n  x = 1. Actua l ly ,  i n  t h i s  l a s t  case, w e  had 

A t  < 17/N2 (see [21). The more r e s t r i c t i v e  condi t ion  on At i s  due to 

t h e  presence of t he  real eigenvalue wi th  t h e  l a r g e s t  magnitude. One could 

t h i n k  t h a t  t h i s  r e s u l t  nega t ive ly  in f luences  t i m e  d i s c r e t i z a t i o n  f o r  scheme 

(2.2). Nevertheless,  w e  argue t h a t  t h i s  is not  t he  case. I n  f a c t ,  cons ider  

f o r  i n s t ance  problem (2.1), when t h e  i n i t i a l  guess i s  f ( x )  = 1-cos(x-1) 

and g : 0. We d i s c r e t i z e  t h e  equat ion  by c o l l o c a t i o n  a t  t h e  Chebyshev 

nodes x j = 1 , * * *  ,N.  Two d i f f e r e n t  condi t ions  are t e s t e d  i n  x = 1, i.e. 

- 

3,  

(4.4) 

We take  N = 8, a = N and t€[O,T] wi th  T = l ,  and we eva lua te  t h e  e r r o r  

E as i n  (1.4) us ing  both t h e  schemes, r e spec t ive ly  obtained by imposing con- 

d i t i o n s  a o r  b i n  (4.4). Second o rde r  Runge-Kutta is used f o r  t i m e  d i s -  

c r e t i z a t i o n .  Figure 4.2 shows t h e  behavior of t h e  e r r o r  versus  At. As t h e  

a n a l y s i s  of the e igenvalues  pointed ou t ,  by inc reas ing  At us ing  condi- 

t i o n  b, i n s t a b i l i t y  occurs  earlier than  us ing  cond i t ion  a. 
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condition A A- condition B I I 

I 
I - 

. O S  
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Figure  4.2 - Comparison of t he  e r r o r s  versus  A t  us ing  d i f f e r e n t  boundary 
condi t ions.  

Nevertheless ,  t he  e r r o r  r e l a t i v e  t o  condi t ion  b i s  d e f i n i t e l y  lower than the  

o ther .  Furthermore, t he  choice of a higher  A t  is not appropr i a t e  because 

the  t i m e  d i s c r e t i z a t i o n  e r r o r  dominates, 

For t h e  same example, Table 4.1 shows the  e r r o r  when T = 1 f o r  var ious  

choices  of N. 
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A t  = .01 A t  = .001 A t  = .0001 

N 'Condition a Condition b Condition a 

.16443-02 8 .1649E-02 . 1 1243-02 

16 .20763-03 .2039E-01 .1996E-03 

32 .6837E-04 OVERFLOW .38463-04 

Table 4.1 - Comparison of the errors for different At and N. 

I 

Condition b Condition a Condition b 

.1122E-02 .16443-02 .11223-02 

.19623-03 .1995E-03 -19613-03 

.3653E-04 .38423-04 .3649E-04 

Similarly, Table 4.2 shows the error when different values of T are used 

and At = .001. In almost all the cases the use of condition b is pre- 

ferred, especially when large values of T are considered. 

T = .5 T = 2  
N Condition a Condition b Condition a Condition b 

T = 10 
Condition a Condition b 

L '  

8 -1107E-02 .12003-02 .8904E-03 

16 .2594E-Oe -25403-03 .9567E-04 

32 -41683-04 -3904E-04 .1187E-04 

.4098E-09 

.2718E-13 

.98723-19 

.78753-03 .20 1 OE-07 

.8506E-04 .83123-10 

. 1 1 743-04 .22313-14 

N. 

Similar results can be obtained when time dependent boundary conditions are 

considered. 

We conclude this section by discussing preconditioning for the matrix 

corresponding to (1.3). For the matrix resulting from scheme (1.2) an 

efficient preconditioner was proposed in [31. Such preconditioners can be 
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written as a product of two NxN matrices Z and D, where D is the up- 

wind finite-differences matrix at the collocation nodes and Z is a shift in 

the space of polynomials of degree N-1, from the values at the staggered grid 

points to the values at the initial grid. The eigenvalues after precondition- 

An analogous result holds ing are real positive and between 1 and - 
€or  the (N+l)x(N+l) matrix corresponding to the scheme (1.3). A s  precondi- 

tioner for such matrix we set ZD, where Z and D take respectively 

IT 
2 ’  

nn A A 

the form 

The preconditioned eigenvalues can be explicitly computed also in this case. 

They are - ll m sin - - 2N 
mrr sin - 2N 

, m = l,***,N. - 
‘rn A. = 1; 

ll m sin 
L 11 - - , m = l,***,N. mrr sin - 2N 

‘rn A. = 1; 

In particular 1 - < A m  < . The corresponding eigenfunctions, up to a 

multiplicative constant, are 

2 
m = O,l,**.,N. 

The preconditioner presented above is particularly suggested when steady state 

solutions of problem (2.2) have to be computed. 
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